1 LTI system realization

1. The input x and output y of an LTI system are related by the difference equation

$$
\begin{equation*}
y(n)+0.9 y(n-1)+0.2 y(n-2)=x(n)+x(n-1) \tag{1}
\end{equation*}
$$

(a) Implement (1) in Direct Form I. (This will have three delays.)
(b) Take this direct form. Construct a vector $s(n) \in$ Reals 3 whose three components are the outputs of the four delays at time n. Find A, b, c, d such that

$$
\begin{aligned}
s(n+1) & =A s(n)+b x(n) \\
y(n) & =c^{T} s(n)+d x(n)
\end{aligned}
$$

(c) Implement (1) in Direct Form II. (This will have two delays.)
(d) Take this direct form. Construct a vector $s(n) \in$ Reals 2 whose two components are the outputs of the two delays at time n. Find A, b, c, d such that

$$
\begin{align*}
s(n+1) & =A s(n)+b x(n) \\
y(n) & =c^{T} s(n)+d x(n) \tag{2}
\end{align*}
$$

(e) The two state machines constructed in part (1b) and part (1d) are different. What is the relation between them in terms of simulation relation?
(f) Take $x(n)=x(0) e^{j \omega n}, s(n)=s(0) e^{j \omega n}, y(n)=y(0) e^{j \omega n}$ in (2). Show that

$$
H(\omega)=\frac{y(0)}{x(0)}=c^{T}\left[e^{j \omega} I-A\right]^{-1} b+d
$$

is the frequency response of the LTI system. Calculate $H(\omega)$ using the specific values of A, b, c you obtained in part (1d).
(g) Calculate the frequency response directly from (2) and verify that it is the same as that calculated above.
(h) The frequency response is

$$
H(\omega)=\frac{1+e^{-j \omega}}{1+0.9 e^{-j \omega}+0.2 e^{-2 j \omega}}
$$

Use the fact that its denominator can be factored as $\left(1+0.5 e^{-j \omega}\right)\left(1+0.4 e^{-j \omega}\right)$ to express H as

$$
\begin{equation*}
H(\omega)=\frac{\alpha}{1+0.5 e^{-j \omega}}+\frac{\beta}{1+0.4 e^{j \omega}} \tag{3}
\end{equation*}
$$

and calculate α and β.
(i) Show that the frequency response of an LTI system with impulse response $h(n)=$ $a^{-n}, n \geq 0 ;=0, n<0$ is $\left[1-a e^{-j \omega}\right]^{-1}$. Use this fact to obtain the impulse response of the difference equation (1) from its frequency response (3)

Figure 1: Signals for problem 1
(j) From (2) we also know that the (zero-state) impulse response is given by:

$$
h(n)= \begin{cases}0, & n<0 \tag{4}\\ d, & n=0 \\ c^{T} A^{n-1} b, & n \geq 1\end{cases}
$$

Verify that the impulse response calculated using (4) is the same as what you obtained above for $n=0,1,2,3$.

2 Convolution

1. Study the discrete-time signals x, y shown in figure 1 . Assume that $x(n)$ and $y(n)$ equal 0 for values of n that are not shown.
(a) For $n=0,4,-4$, sketch the signals x_{n}, y_{n} given by

$$
\forall m \in \text { Ints, } \quad x_{n}(m)=x(n-m), y_{n}(m)=y(n-m) .
$$

(b) Calculate $x * y(-4), x * y(0), x * y(4), x * y(16)$.
2. Sketch the continuous-time signals v, w constructed from x, y of problem 1 by

$$
v(t)=x(n), w(t)=y(n), \text { for } n \leq t<n+1 .
$$

(a) For $t=0,3.5,-3.5$, sketch the signals v_{t}, w_{t} defined by

$$
\forall s \in \operatorname{Reals}, \quad v_{t}(s)=v(s-t), w_{t}(s)=w(t-s) .
$$

(b) Calculate $v * w(-3.5), v * w(0), v * w(3.5), v * w(16)$.
3. Let x, y, z be continuous-time signals as shown in the figure 2 . For each of the convolutions listed in table 1 determine (1) the set of times t at which the convolution is not equal to zero, (2) the times t at which the convolution achieves its maximum value, and (3) the times at which the maximum value is achieved. The table includes the answer for the first convolution $x * x$.

Figure 2: Signals for problem 3

signal	$\{t \mid$ signal is non-zero $\}$	maximum value of signal
$x * x$	$(-4,-2)$	1
$x * y$		
$x * z$		
$y * y$		
$y * z$		
$z * z$		

Table 1: Table for Problem (3)

3 Fourier Transform

1. Find the CTFT X of the continuous time signal x given below and in each case plot the function: $\omega \mapsto|X(\omega)|$.
(a) $\forall t, \quad x(t)=\cos 20 t+\cos 30 t$
(b) $\forall t, \quad x(t)=\delta(t-20)+\delta(t+20)$
(c) $\forall t, \quad x(t)=1, t \in[-1,1] ;=0$, otherwise
(d) $\forall t, \quad x(t)=1, t \in[2,4] ;=0$, otherwise
(e) $\forall t, \quad x(t)=(\sin t) / t$
2. Use the fact that the CTFT of the product $x \times y$ is given by the convolution $2 \pi X * Y(-\omega)$ to obtain the CTFT $Z(\omega)$ of the signal

$$
z(t)=\cos 20 t+\cos 30 t, t \in[-T, T] ;=0, \text { otherwise }
$$

Sketch $Z(\omega)$ and explain what happens to Z as $T \rightarrow \infty$.

