EECS20n, Solution to Mock Midterm 2, 11/17/00

1. $\mathbf{1 5}$ points Write the following in Cartesian coordinates (i.e. in the form $x+j y$)
(a) $\mathbf{1}$ point $j^{3}-j^{2}+j-1=0$
(b) 2 points $\sum_{k=0}^{11} e^{j k \pi / 6}=\frac{1-e^{j 12 \pi / 6}}{1-e^{j \pi / 6}}=0$
(c) 2 points $(1+j 1) /(1-j 1)=j$
(d) 2 points $\sqrt{\cos \pi / 4+j \sin \pi / 4}=\sqrt{e^{j \pi / 4}}= \pm e^{j \pi / 8}= \pm(\cos \pi / 8+j \sin \pi / 8)$.

Write the following in polar coordinates (i.e. in the form $r e^{j \theta}$)
(a) $\mathbf{2}$ points $1+j 1=\sqrt{2} e^{j \pi / 4}$
(b) 2 points $(1+j 1) 3=3 \sqrt{2} e^{j \pi / 4}$
(c) 2 points $[\cos \pi / 4+j \sin \pi / 4]^{1 / 2}= \pm 1 . e^{j \pi / 8}$
(d) 2 points $(1+j 1) /(1-j 1)=1 . e^{j \pi / 2}$
2. 15 points Which of the following discrete-time or continuous-time signals is periodic. Answer yes or no. If the signal is periodic, give its fundamental period and state the units. Suppose that for a discrete-time signal, n denotes seconds, and for a continuous-time signal, t denotes minutes.
(a) 2 points $\forall n \in$ Ints, $\quad x(n)=e^{j \sqrt{2} n} \quad$ Periodic NO
(b) 2 points $\forall t \in$ Reals, $\quad x(t)=e^{j \sqrt{2} t} \quad$ Periodic YES, Period $=2 \pi / \sqrt{2} \mathrm{~min}$.
(c) 2 points $\forall n \in$ Ints, $\quad x(n)=\cos 3 \pi n+\sin (3 \pi n+\pi / 7) \quad$ Periodic YES, Period $=2$ sec.
(d) 2 points $\forall t \in$ Reals, $\quad x(t)=\cos 3 t+|\sin 3 t| \quad$ Periodic YES, Period $=2 \pi / 3 \mathrm{~min}$.
(e) 2 points $\forall n \in$ Ints, $\quad x(n)=|\cos 3 \pi n|+\sin (3 \pi n+\pi / 7) \quad$ Periodic YES, Period $=$ 2 sec .

5 points Find A, θ, ω in the following expression:

$$
\begin{aligned}
A \cos (\omega t+\theta) & =\cos \left(2 \pi \times 10,000 t+\frac{\pi}{4}\right)+\sin \left(2 \pi \times 10,000 t+\frac{\pi}{4}\right) \\
& =\sqrt{2} \cos (2 \pi \times 10,000 t)
\end{aligned}
$$

So, $A=\sqrt{2}, \omega=20,000 \pi, \theta=0$.

Figure 1: Plots for Problem 3
3. 15 points On Figure 1 plot the amplitude and phase response of the following frequency responses. On your plots carefully mark the values for $\omega=0$ and for one other non-zero value of ω.
(a) 4 points $\forall \omega \in$ Reals, $\quad H_{1}(\omega)=1+j \omega$.

So, $\left|H_{1}(\omega)\right|=\left[1+\omega^{2}\right]^{1 / 2}, \angle H_{1}(\omega)=\tan ^{-1} \omega .\left|H_{1}(0)\right|=1,\left|H_{1}(1)\right|=\sqrt{2}$, $\angle H_{1}(0)=0, \angle H_{1}(1)=\pi / 4$.
(b) 4 points $\forall \omega \in$ Reals, $\quad H_{2}(\omega)=\frac{1}{1+j \omega}$. So, $\left|H_{2}(\omega)\right|=\left[1+\omega^{2}\right]^{-1 / 2}, \angle H_{2}(\omega)=$ $-\tan ^{-1} \omega \cdot\left|H_{2}(0)\right|=1,\left|H_{2}(1)\right|=1 / \sqrt{2}, \angle H_{2}(0)=0, \angle H_{1}(1)=-\pi / 4$.
(c) 4 points $\forall \omega \in$ Reals, $\quad H_{3}(\omega)=1+\cos \omega$.

So $\left|H_{3}(\omega)\right|=1+\cos \omega, \angle H_{3}(\omega)=0 . H_{3}(0)=2, H_{3}(\pi)=0$.
3 points Which of H_{1}, H_{2}, H_{3} can be the frequency response of a discrete-time system?
H_{3}. Since it is periodic with period 2π.

Figure 2: Impulse and step response for Problem 4
4. 15 points A discrete-time system H has impulse response $h:$ Ints \rightarrow Reals given by

$$
h(n)= \begin{cases}1, & n=-2,-1,0,1,2 \\ 0, & \text { otherwise }\end{cases}
$$

(a) $\mathbf{2}$ points Sketch h.
(b) $\mathbf{5}$ points What is the step response of H, i.e. the output signal when the input signal is step, where $\operatorname{step}(n)=1, n \geq 0$, and $\operatorname{step}(n)=0, n<0$? You can give your answer as a plot or as an expression.
(c) $\mathbf{5}$ points What is the frequency response of H ?
(d) $\mathbf{3}$ points What is the output signal of H for the following input signals?
i. $\forall n, \quad x(n)=\cos n$
ii. $\forall n, \quad x(n)=\cos (n+\pi / 6)$
iii. $\forall n, \quad x(n)=\sin 100 n$
(a,b)Figure 2 shows h and the step response y. An alternative way to calculate y is

$$
\begin{aligned}
\forall n \in \text { Ints, } \quad y(n) & =\sum_{m=-\infty}^{\infty} h(m) x(n-m) \\
& =x(n+2)+x(n+1)+x(n)+x(n-1)+x(n-2) \\
& =0, n \leq-3 ; 1, n=-2 ; 2, n=-1 ; 3, n=0 ; 4, n=1 ; 5, n \geq 2
\end{aligned}
$$

(c) The frequency response is

$$
\begin{aligned}
\hat{H}(\omega) & =\sum_{n=-\infty}^{\infty} h(n) e^{-j \omega n} \\
& =\sum_{n=-2}^{2} e^{-j \omega n} \\
& =1+2 \cos \omega+2 \cos 2 \omega
\end{aligned}
$$

(d) Use the fact that the response to a signal $x(n)=\cos (\omega n+\theta)$ is $y(n)=|\hat{H}(\omega)| \cos (\omega n+$ $\theta+\angle \hat{H}(\omega))$.
i. $\forall n, \quad y(n)=\hat{H}(1) x(n)=[1+2 \cos 1+2 \cos 2] \cos n$
ii. $\forall n, \quad y(n)=\hat{H}(1) x(n)=[1+2 \cos 1+2 \cos 2] \cos (n+\pi / 6)$
iii. $\forall n, \quad y(n)=\hat{H}(100) x(n)=[1+2 \cos 100+2 \cos 200] \sin 100 n$

5. 15 points

(a) $\mathbf{5}$ points Find the frequency response for the LTI systems described by these differential equations (input is x, output is y)
i. $\dot{y}(t)-0.5 y(t)=x(t)$
ii. $\ddot{y}(t)-0.5 \dot{y}(t)+0.25 y(t)=\dot{x}(t)+x(t)$
(b) $\mathbf{5}$ points What is the response of the second system above for the input $\forall t, x(t)=$ $e^{j(100 t+\pi / 4)}$?
(c) $\mathbf{5}$ points Find the frequency response for the LTI systems described by these difference equations (input is x, output is y)
i. $y(n)-0.5 y(n-1)=x(n)$
ii. $y(n)-y(n-1)+0.25 y(n-2)=x(n)+x(n-1)$
(a) Using $y(t)=\hat{H}(\omega) e^{j \omega t}$ is the response to $x(t)=e^{j \omega t}$, we get
i. $\frac{1}{j \omega-0.5}$
ii $\hat{H}(\omega)=\frac{j \omega+1}{-\omega^{2}-0.5 j \omega+0.25}=\frac{1+j \omega}{0.25-\omega^{2}-0.5 j \omega}$
(b) The response is $\forall t, \quad \hat{H}(100) e^{j(100 t+\pi / 4)}$.
(c) Using $y(n)=\hat{H}(\omega) e^{j \omega n}$ is the response to $x(n)=e^{j \omega n}$, we get
i. $\frac{1}{1-0.5 e^{-j \omega}}$
ii. $\frac{1+e^{-j \omega}}{1-e^{-j \omega}+0.25 e^{-2 j \omega}}$.

Figure 3: Periodic signals for Problem 6
6. 15 points Figure 3 plots two continuous-time periodic signals x and y both with period 1 second, and two discrete-time signals u and v both with period 10 samples. The plots are given only for one period. Suppose the exponential Fouriers Series representations of these signals are given as:

$$
\begin{aligned}
\forall t \in \text { Reals, } \quad x(t)= & \sum_{k=-\infty}^{\infty} X_{k} e^{j k \omega_{x} t} \\
\forall t \in \text { Reals, } \quad y(t)= & =\sum_{k=-\infty}^{\infty} Y_{k} e^{j k \omega_{y} t} \\
\forall n \in \text { Ints, } \quad u(n) & =\sum_{k=0}^{9} U_{k} e^{j k \omega_{u} n} \\
\forall n \in \text { Ints, } \quad v(n) & =\sum_{k=0}^{9} V_{k} e^{j k \omega_{v} n}
\end{aligned}
$$

(a) 3 points Give the values of $\omega_{x}=2 \pi \mathrm{rad} / \mathrm{sec}, \omega_{y}=2 \pi \mathrm{rad} / \mathrm{sec}, \omega_{u}=\pi / 5 \mathrm{rad} / \mathrm{sample}$, $\omega_{v}=\pi / 5 \mathrm{rad} /$ sample.
(b) 4 points Calculate the values of the coefficients $X_{0}=0.25, Y_{0}=0.25, U_{0}=0.4$, $V_{0}=0.4$.
These are just the average values of the signal over one period.
(c) 2 points Suppose the signals x is measured in Volts. What is the unit of X_{0} ? Volts.
(d) 4 points Calculate the values of the coefficients $X_{1}=\int_{t=0}^{0.25} e^{-j 2 \pi t} d t=\frac{1-j}{2 \pi}$
$Y_{1}=\int_{t=0.5}^{0.75} e^{-j 2 \pi t} d t=\frac{-1+j}{2 \pi}$
$U_{1}=\frac{1}{10} \sum_{n=0}^{9} x(n) e^{-j \pi / 5 n}=\frac{1}{10} \sum_{n=0}^{3} e^{-j \pi / 5 n}=\frac{1-e^{-j 4 \pi / 5}}{10\left(1-e^{-j \pi / 5}\right)}$
$V_{1}=\frac{1}{10} \sum_{n=3}^{6} e^{-j \pi / 5 n}=e^{-j 3 \pi / 5} \frac{1-e^{-j 4 \pi / 5}}{10\left(1-e^{-j \pi / 5)}\right.}$
(e) 3 points Express y as a delayed version of x and v as a delayed version of u.
$\forall t, y(t)=x(t-0.5), \forall n, v(n)=x(n-3)$.
(f) 4 points Express the FS coefficients $\left\{Y_{k}\right\}$ in terms of $\left\{X_{k}\right\}$ and $\left\{V_{k}\right\}$ in terms of $\left\{U_{k}\right\}$. $\forall k, \quad Y_{k}=X_{k} e^{-j k \pi}, \forall k, \quad V_{k}=U_{k} e^{-j k 3 \pi / 5}$.

Figure 4: Feedback systems for Problem 7
7. 15 points Figure 4 shows two feedback systems. In these figures, $H_{k}(\omega), k=1,2,3$ is the frequency response of the three LTI systems.
(a) $\mathbf{9}$ points Calculate the closed-loop frequency response $H(\omega)$ of the first feedback system in terms of the H_{k}. Hint: Use the fact that the two systems are the same.
By the hint, $H_{4}=H_{1} /\left(1-H_{1}\right)$. So,

$$
\begin{equation*}
H=\frac{H_{4} H_{2}}{1-H_{4} H_{2} H_{3}}=\frac{H_{1} H_{2}}{1-H_{1}-H_{1} H_{2} H_{3}} \tag{1}
\end{equation*}
$$

(b) 6 points Suppose $H_{k}(\omega)=1 /(1+j 2 \omega)$ for all $k=1,2,3$. Calculate $H(0), H(1)$ and $\lim _{\omega \rightarrow \infty} H(\omega)$.
We have $H_{k}(0)=1, H_{k}(1)=1 /(1+j 2), \lim _{\omega \rightarrow \infty} H_{k}(\omega)=0$. Substitution in (1) gives,

$$
H(0)=-1, H(1)=\frac{\frac{1}{(1+2 j)^{2}}}{1-\frac{1}{1+2 j}-\frac{1}{(1+2 j)^{3}}}=\frac{1+2 j}{(1+2 j)^{3}-(1+2 j)^{2}-1}
$$

$\lim _{\omega \rightarrow \infty} H(\omega)=0$.

Figure 5: Impulse response for Problem 8
8. $\mathbf{1 5}$ points A continuous-time LTI system has the impulse response

$$
\forall t \in \text { Reals, } \quad h(t)= \begin{cases}1, & |t|<1 \\ 0, & \text { otherwise }\end{cases}
$$

(a) $\mathbf{3}$ points Sketch the impulse response, and mark carefully the relevant points on your plot.
This is shown in Figure 5
(b) $\mathbf{3}$ points Is this system causal? Answer yes or no. NOT CAUSAL.
(c) $\mathbf{3}$ points What is the step response of this system, i.e. the response to $\operatorname{step}(t)=1, t \geq 0$ and $=0, t<0$?
The step response is the integral of the impulse response,

$$
y(t)=\int_{s=-\infty}^{t} h(s) d s= \begin{cases}0, & t \leq-1 \\ t+1, & -1 \leq t \leq 1 \\ 2, & t \geq 1\end{cases}
$$

A sketch of y is in the figure.
(d) $\mathbf{3}$ points What is the ramp response of this system, i.e. the response to $\operatorname{ramp}(t)=t, t \geq$ 0 , and $=0, t<0$?
The ramp response v is the integral of the step response,

$$
v(t)=\int_{s=-\infty}^{t} y(s) d s= \begin{cases}0, & t \leq-1 \\ \frac{1}{2}(t+1)^{2},-1 \leq t \leq 1, & \\ 2+2(t-1), & t \geq 1\end{cases}
$$

(e) $\mathbf{3}$ points What is the respone of this system to the input signal impulsetrain, where

$$
\forall t \in \text { Reals, } \quad \text { impulsetrain }(t)=\sum_{k=-\infty}^{\infty} \delta(t-2 k) .
$$

The response is

$$
\begin{aligned}
\forall t, \quad w(t) & =h * \operatorname{impulsetrain}(t) \\
& =\int_{\tau=-\infty}^{\infty} h(t-\tau) \operatorname{impulsetrain}(\tau) d \tau
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{k=-\infty}^{\infty} \int_{\tau=-\infty}^{\infty} h(t-\tau) \delta(\tau-2 k) \\
& =\sum_{k=-\infty}^{\infty} h(t-2 k)=1
\end{aligned}
$$

