EECS 20. Midterm No. 1 October 8, 2001.

Please use these sheets for your answer and your work. Use the backs if necessary. Write clearly and put a box around your answer, and show your work.

Print your name and lab time below

Name:		
Lab time:		
Problem 1:		
Problem 2:		
Problem 3:		
Total:		

1. **40 points.** Please indicate whether the following statements are true or false. There will be no partial credit. They are either true or false. So please be sure of your answer.

(a)
$$[\{1,2,3\} \rightarrow \{a,b\}] \subset [\textit{Naturals} \rightarrow \{a,b\}]$$

(b)
$$\{g \mid g = graph(f) \land f : X \to Y\} \subset X \times Y$$

(c) $F:[Reals \to Reals] \to [Reals \to Reals]$, such that $\forall t \in Reals$, and $\forall x \in [Reals \to Reals]$,

$$(F(x))(t) = \sin(2\pi \cdot 440t)$$

is a memoryless system.

(d) Let $f: Reals \to Reals$ and $g: Reals \to Reals$, where g is obtained by delaying f by $\tau \in Reals$. That is,

$$\forall t \in Reals, \quad g(t) = f(t - \tau).$$

Then $graph(g) \subset graph(f)$.

2. 30 points. Consider a state machine where

$$\begin{split} &\textit{Inputs} = \{1, absent\}, \\ &\textit{Outputs} = \{0, 1, absent\}, \\ &\textit{States} = \{a, b, c, d, e, f\}, \\ &\textit{initialState} = a, \end{split}$$

and the *update* function is given by the following table (ignoring stuttering):

(currentState, inputSymbol)	(nextState, outputSymbol)		
(a,1)	(b, 1)		
(b, 1)	(c, 0)		
(c,1)	(d, 0)		
(d,1)	(e,1)		
(e,1)	(f,0)		
(f,1)	(a, 0)		

(a) Draw the state transition diagram for this machine.

(b) Ignoring stuttering, give the *Behaviors* relation for this machine.

(c)	Find a state machine with three states that is bisimilar to machine, and give the bisimulation relation.	this one.	Draw that state

3. **30 points.** Consider the following three state machines:

Machines A and B have input and output alphabets

$$\mathit{Inputs} = \mathit{Outputs} = \{0, 1, \mathit{absent}\}.$$

 $\label{eq:machine} \mbox{Machine C has the same output alphabet, but input alphabet } \mbox{$Input$$$$$$$$$$_{C} = \{react, stutter\}$.}$

(a) Which of these machines is deterministic?

(b)	Draw the state transition diagram for the composition (machine C), showing only states that are reachable from the initial state.
(c)	Give the $Behaviors_C$ relation for the composition of machine C, ignoring stuttering.

Use this page for overflow