
EECS 20. Midterm No. 2 Practice Problems Solution, November 10,
2004.

1. When the inputs to a time-invariant system are: ∀n,

x1(n) = 2δ(n − 2)
x2(n) = δ(n + 1)

, where δ is the Kronecker delta

the corresponding outputs are

y1(n) = δ(n − 2) + 2δ(n − 3)
y2(n) = 2δ(n + 1) + δ(n)

, respectively.

Is this system is linear? Give a proof or a counter-example.

Answer to 1 The system is not linear. From time-invariance we see that for the second pair
of input and output,

x2(n − 3) = δ(n − 2)
y2(n − 3) = 2δ(n − 2) + δ(n − 3)

So we can rewrite the first pair of input and output as

x1(n) = 2δ(n − 2)
= 2x2(n − 3)

y1(n) = δ(n − 2) + 2δ(n − 3)
�= 2y2(n − 3) = 4δ(n − 2) + 2δ(n − 3)

Therefore, the system is not linear.

2. Consider discrete-time systems with input and output signals x, y ∈ [Integers → Reals].
Each of the following relations defines such a system. For each, indicate whether it is lin-
ear(L), time-invariant (TI), both(LTI), or neither (N). Give a proof or counter-example.

(a) y(n) = g(n)x(n)

(b) y(n) = ex(n)

Answer to 2
(a) The system is linear:

x̂(n) = ax1(n) + bx2(n)
ŷ(n) = g(n)(ax1(n) + bx2(n))

= ay1(n) + by2(n)
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Also the system is time-varying if g is not constant (so there exist n, n0 so that g(n) �=
g(n − n0)):

x̂(n) = x(n − n0)
ŷ(n) = g(n)x̂(n)

= g(n)x(n − n0)
�= y(n − n0)
= g(n − n0)x(n − n0)

(b) The system is non-linear:

x̂(n) = ax1(n) + bx2(n)
ŷ(n) = ex̂(n)

= eax1(n)+bx2(n)

= (y1(n))a(y2(n))b

�= ay1(n) + by2(n)

But the system is time-invariant:

x̂(n) = x(n − n0)
ŷ(n) = ex̂(n)

= ex(n−n0)

= y(n − n0)

3. (a) An LTI system with input signal x and output signal y is described by the differential
equation

ÿ(t) + 2ẏ(t) + 0.5y(t) = x(t).

Suppose the input signal is ∀t, x(t) = eiωt, where ω is fixed. What is its output signal
y?

(b) Another LTI system is subject to the differential equation

ÿ(t) + y(t) = ẋ(t) + x(t)

i. What is the frequency response?
ii. What is the magnitude and phase of the frequncy response for ω = 0.5?

Answer to 3
(a) The output signal is ∀t, y(t) = H(ω)eiωt. It follows that

−ω2H(ω)eiωt + 2iωH(ω)eiωt + 0.5H(ω)eiωt = eiωt,

thus H(ω) = 1
−ω2+2iω+0.5

, Hence

∀t, y(t) =
1

−ω2 + 2iω + 0.5
eiωt
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(b) (i) The frequency response is H(ω) = iω+1
−ω2+1 .

(ii) Hence

|H(0.5)| = |4
3

+ i
2
3
| =

2
√

5
3

, ∠H(0.5) = tan−1 0.5

4. For this problem, assume discrete time everywhere. Given two LTI systems S and T suppose
signal f is input into S and g into T . The input and output signals are displayed in figure1.
Are the two systems identical, that is, S = T ?

−3 −2 −1 0 1 2 3
−1

−0.5

0

0.5

1
f(n)

−3 −2 −1 0 1 2 3
−1

−0.5

0

0.5

1
(S(f))(n)

−3 −2 −1 0 1 2 3
−1

−0.5

0

0.5

1
g(n)

−3 −2 −1 0 1 2 3
−1

−0.5

0

0.5

1
(T(g))(n)

Figure 1: Signals for problem 4

Answer to 4 No. S �= T Argue by contradiction. Assume S = T = R, say. Observe that
f(n) is (g − f)(n + 1). The figure below plots R(g − f)(n) = T (g)(n) − S(f)(n) and
R((g − f))(n + 1) = R(f)(n) = S(f)(n). But the second plot is not the first plot delayed
by 1.

5. A system is described by the difference equation

y(n) = x(n) + bx(n − 1) + ay(n − 1), (1)

wherein a, b are constants.

(a) Obtain the [A, b, cT , d] representation of this system by:

i. choosing the state,

ii. calculating A, b, cT , d for your choice of state.

(b) If x(n − 1) = 0, y(n − 1) = 1, calculate the zero-input (i.e. x(n) = 0, n ≥ 0) state
response.
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(c) Calculate the frequency response of this system.

Answer to 5 (a) (i) Take the state as s(n) = [x(n − 1), y(n − 1)]T .

(ii) Writing s(n + 1) = As(n) + bx(n) in expanded form gives

s(n + 1) =
[

x(n)
y(n)

]
=

[
x(n)

x(n) + bx(n − 1) + ay(n − 1)

]

=
[

0 0
b a

] [
x(n − 1)
y(n − 1)

]
+

[
1
1

]
x(n),

from which

A =
[

0 0
b a

]
, b =

[
1
1

]
(2)

and, since

y = [b a]
[

x(n − 1)
y(n − 1)

]
+ x(n),

so cT = [b a], d = 1.

(b) The zero-input state response is s(n) = Ans(0), n ≥ 0. So we need to calculate An, with
A given in (2). By induction,

An =
[

0 0
an−1b an

]

and since s(0) = [0 1]T , s(n) = [0 an].
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(c) To obtain the frequency response, substitute x(n) = eiomegan, y(n) = H(ω)eiωn in )(1)
and simplify to get

∀ω, H(ω) =
1 + be−iω

1 − ae−iω
.

6. For the linear difference equation

y(n) = 0.5y(n − 1) + x(n),

(a) Taking the state at time n to be s(n) = y(n − 1), write down the zero-input response,
the zero-state impulse response h : Ints → Reals, the zero-state response, and the (full)
response.

(b) Show that the zero-input response yzi is a linear function of the initial state, i.e. it is of
the form

∀n ≥ 0, yzi(n) = a(n)s(0),

for some constant coefficients a(n). Then show that

lim
n→∞ yzi(n) = 0

(c) Suppose s0 is the initial state and the input is a unit step, i.e. x(n) = 1, n ≥ 0;= 0, n <
0. Determine the response y(n), n ≥ 0, and calculate the steady state response

yss = lim
n→∞ y(n).

(d) Plot the input, output and the steady state value in the previous part.

(e) Calculate the frequency response H : Reals → Complex and plot the magnitude and
phase response.

(f) Suppose x(n) = 1,−∞ < n < ∞. What is the output y(n),−∞ < n < ∞ and
compare it with yss.

Answer to 6 (a) The a, b, c, d representation is (with s(n) = y(n − 1))

s(n + 1) = 0.5s(n) + x(n), y(n) = 0.5s(n) + x(n).

The zero-input response (x(n) = 0, n ≥ 0) is

szi(n) = 0.5ns(0), yzi(n) = 0.5n+1s(0) = 0.5n+1y(−1). (3)

The zero-state impulse response is

∀n ≥ 0, h(n) =
{

d = 1, n = 0
can−1b = 0.5n, n ≥ 1

= 0.5n.

So the full response is

y(n) = 0.5n+1y(−1) +
n∑

m=0

0.5n−mx(m), n ≥ 0. (4)
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Figure 2: Plots for problem 6

(b) From (3) yzi is a linear (time-varying) function of the initial state with a(n) = 0.5n+1.
Clearly, yzi(n) → 0 as n → ∞.

(c)In (4) take x(m) = 1,m ≥ 0 to get

y(n) = 0.5n+1s0 +
n∑

m=0

0.5n−m × 1

= 0.5n+1s0 +
n∑

k=0

0.5k = 0.5n+1s0 +
1 − 0.5n+1

1 − 0.5

→ yss = 2 as n → ∞

(d) The plots are straightforward.

(e) The frequency response is

∀ω, H(ω) =
1

1 − 0.5e−iω
,

the magnitude response is

∀ω, |H(ω)| =
1

[1.25 − cos(ω)]1/2
,

the phase response is

∀ω, ∠H(ω) = tan−1 0.5 sin(ω)
1 − 0.5 cos(ω)

.

The plots in figure 2 are for 0 ≤ ω ≤ π:

(f) In this case x(n) ≡ ei0n, so y(n) ≡ H(0)ei0n = 2 = yss.

7. Suppose x is a continuous-time periodic signal, with period p and exponential FS representa-
tion,

∀t, x(t) =
∞∑

k=−∞
Xk exp(ikω0t),

in which ω0 = 2π/p.
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(a) Write down the formula for Xk in terms of x.

(b) Consider the signal y,

∀t, y(t) = x(αt),

in which α > 0 is some positive constant.

i. Show that y is periodic and find its period q.

ii. Suppose y has FS representation

∀t, y(t) =
∞∑

k=−∞
Yk exp(kω1t),

What is ω1? Determine the Yk in terms of the Xk.

Answer to 7 (a) The formula is

Xk =
1
p

∫ p

0
x(t)e−ikω0tdt.

(b) We want y(t) = x(αt) = y(t + q) = x(α(t + q)) = x(t + p), so αq = p or q = p/α. So
the FS of y is

y(t) =
∑

k

Yke
ikω1t

=
∑

k

Xke
ikαω0t

from which ω1 = αω0 and Yk = Xk.

8. Give an example of a nonlinear, time-invariant system S that is not memoryless. Time is
discrete.

(a) Show that S is nonlinear, time-invariant, and not memoryless.

(b) Suppose x : Ints → Reals is periodic with period p. Let y = S(x). Is y periodic?

(c) Suppose Q is another discrete-time, time-invariant system. Is the cascade composition
S ◦ Q time-invariant? Give a proof or a counterexample.

(d) Define the system R by reversing time: ∀x, n,R(x)(n) = S(x)(−n). Is R time-
invariant? Why? If x is periodic as above and w = R(x), is w periodic? Why.

Answer to 8 One possible system is

∀x,∀n, S(x)(n) = [x(n − 1)]2.

(a) S is clearly nonlinear since, if x(n − 1) �= 0, S(2x)(n) = 4[x(n − 1)]2 �= 2[x(n − 1)]2.
S is time-invariant, since for any integer T ,

S ◦ DT (x)(n) = [x(n − T − 1)]2 = DT ◦ S(x)(n).
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S is not memoryless, because if it is there is f : Reals → Reals with

S(x)(n) = f(x(n)).

But this will not hold if we choose x, n, n − 1 so that x(n) = 0 and [x(n − 1)]2 �= f(0).

(b) Yes it is periodic, since

S(x)(n + p) = D−p ◦ Sx(n) = S ◦ D−p(x)(n) = S(x)(n),

since D−px = x because x is periodic with period p.

(c) The composiiton of any two time-invariant systems is periodic, since

DT ◦ (Q ◦ S) = Q ◦ DT ◦ S = (Q ◦ S) ◦ DT .

(d) R is not time-invariant, because

DT ◦ R(x)(n) = R(x)(n − T ) = S(x)(−n + T ) = [x(−n + T − 1)]2

R ◦ DT (x)(n) = S ◦ DT (x)(−n) = [DT (x)(−n − 1)]2 = [x(−n − 1 − T )]2.

These two quantities are not equal for particular choices of x, n, T .

w is periodic with the same period p, because by part (b) S(x) is periodic with period p, so

w(n + p) = S(x)(−n − p) = S(x)(−n) = R(x)(n) = w(n).

9. You are given three kinds of building blocks for discrete-time systems: one-unit delay; gains;
and adders.

(a) Use these building blocks to implement the system:

y(n) = 0.5y(n − 2) + x(n) + x(n − 1). (5)

(b) Take the outputs of the delay elements as the state and give a [A, b, cT , d] representation
of this system.

(c) You are allowed to set the output of the delay elements to any value at time n = 0. Select
these values so that the output of your implementation is the solution y(n), n ≥ 0 for
any input x(n), n ≥ 0 and initial conditions: y(−1) = 0.5, y(−2) = 0.8, x(−1) = 1.
Now suppose x(0) = x(1) = x(2) = 0. Calculate y(0), y(1), y(2).

Answer to 9 (a) Figure 3 is one implementation.

(b) Taking s(n) = [x(n − 1) y(n − 1) y(n − 2)]T and using (5) we get

s(n + 1) =

⎡
⎣ x(n)

y(n)
y(n − 1)

⎤
⎦ =

⎡
⎣ 0 0 0

1 0 0.5
0 1 0

⎤
⎦ s(n) +

⎡
⎣ 1

1
0

⎤
⎦

y(n) = [1 0 0.5]s(n) + 1 × x(n)
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Figure 3: Implementation for problem 9

from which we can read off A, b, c, d.

(c) We take the initial state as s(0) = [x(−1) y(−1) y(−2)]T = [1 0.5 0.8]T . Then

y(0) = cT s(0) = [1 0 0.5]s(0) = 1.4
y(1) = cT As(0) = 0.52 = 0.25
y(2) = cT A2s(0) = 0.7

One can also get these directly from (5).

10. An integrator can be used as a building block: For any input x : Reals+ → Reals, its output
is:

∀t ≥ 0, y(t) = y0 +
∫ t

0
x(s)ds.

The ‘initial condition’ y(0) can be set.

Use integrators, gains and adders to implement the system:

d2y

dt2
(t) − y(t) = x(t), (6)

with iniital condition y(0) = 1, ẏ(0) = 0.4.
Hint First convert a differential equation into an integral equation and then implement.

Answer to 10 Figure 4 shows the implementation

11. A periodic signal x : Reals → Reals is given by

∀t, x(t) = [1 + cos(2π × 10t)] × cos(2π × 400t).

(a) What are the fundamental frequency ω0 and period T0 of x? Calculate the Fourier Series
of x in the forms:

∀t, x(t) = A0 +
∞∑

k=1

Ak cos(kω0t + φk)

=
∞∑

k=−∞
Xke

ikω0t
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0
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Figure 4: Implementation for problem 10
‘

Is Xk = X∗
−k?

(b) Suppose the LTI system S has frequency response

∀ω, H(ω) =
{

1, if 2π × 395 ≤ |ω| ≤ 2π × 405
0, otherwise

Plot the magnitude and phase response of H . Repeat part11a for y.

Answer to 11 Using

cos(x) cos(y) =
1
2

cos(x + y) +
1
2

cos(x − y),

gives

x(t) = cos(2π · 400t) +
1
2

cos(2π · 390t) +
1
2

cos(2π · 410t),

from which

(a) ω0 = 2π · 10 rad/sec and t0 = 0.1 sec. Also

A39 = 0.5, A40 = 1.0, A41 = 0.5, Ak = 0, else;∀kφk = 0

and

Xk = 1
2A|k|eφksgn(k) in which sgn(k) = 1, k ≥ 0;= 0, k < 0. So

X39 = X−39 = X41 = X−41 = 0.25; X40 = X−40 = 0.5; Xk = 0, else.

(b) This system is a bandpass filter, in which only sinusoids with frequencies within specified
range go through unchanged and the others become 0. Thus

∀t, y(t) = cos(2π · 400t); ω0 = 2π · 400 rad/sec; T0 =
1

400
sec.

So,

A1 = 1; Ak = 0, k �= 1; φk = 0,∀k,

X1 = X−1 = 0.5; Xk = 0 else.
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12. Give the ABCD state space representation of a discrete-time system with frequency response
H(ω), where:

H(ω) =
2 + e−jω

1 − 3e−3jω

Hint: First find a difference equation which has the given frequency response. Then find the
state space representation.

Answer to 12 From

H(ω)[1 − 3e−3jω] = 2 + e−jω

we see that H is the frequency response of the difference equation

y(n) − 3y(n − 3) = 2x(n) + x(n − 1).

So we select

s(n) =

⎡
⎢⎢⎣

x(n − 1)
y(n − 1)
y(n − 2)
y(n − 3)

⎤
⎥⎥⎦

A =

⎡
⎢⎢⎣

0 0 0 0
1 0 0 3
0 1 0 0
0 0 1 0

⎤
⎥⎥⎦ B =

⎡
⎢⎢⎣

1
2
0
0

⎤
⎥⎥⎦

CT =
[

1 0 0 3
]

D = 2

13. You are given the signal ∀tx(t) = cos(20πt) + 1 − 2 sin(25πt) to use as input to a system
with frequency response H(ω) = |ω|. Answer the following questions based on this setup.

(a) Indicate the Fourier series expansion (in cosine format) of x by writing the nonzero
values of A0, Ak, and φk in the expansion x(t) = A0 +

∑∞
k=1 Ak cos(kω0t + φk).

(b) Indicate the Fourier series expansion (in complex exponential format) of x(t) by writing
the nonzero values of the complex coefficients Xk in the expansion x(t) =

∑∞
k=−∞ Xke

jkω0t.

(c) Give y, the output of the system with input x.

Answer to 13 (a) First rewrite x(t) = cos(20πt) + 1 − 2 sin(25πt) in terms of cosines:

x(t) = 1 + cos(20πt) + 2 cos(25πt +
π

2
)

11



Next find the fundamental frequency. The largest frequency that evenly divides both 20π and
25π is ω0 = 5π. We rewrite x(t) in terms of nonzero coefficients:

x(t) = 1 + 1 cos(4(5π)t + 0) + 2 cos(5(5π)t +
π

2
)

= A0 + A4 cos(4ω0t + φ4) + A5 cos(5ω0t + φ5)

We see from above that A0 = 1, A4 = 1, φ4 = 0, A5 = 2, φ5 = π
2 , and all other Ak and φk

are zero.

(b) We can calculate the Xk’s directly, but since we’ve already calculated the Ak’s, let’s use
them to derive the Xk’s. (See also page 302 in the text.) Note in particular that with com-
plex exponentials, we have negative frequency and complex coefficients instead of phases,
meaning that the Xk’s are complex and k can be negative.

Recalling that

cos(t) =
ejt + e−jt

2
,

we can say that, for positive k:

Ak cos(ω0kt + φk) =
Ake

jφk

2
ejω0kt +

Ake
−jφk

2
e−jω0kt

= Xke
jω0kt + X−ke

jω0(−k)t

In our case, we have three nonzero Ak. We start with A0. Since cos(0) = ej0 = 1, we
conclude that X0 = A0.

For A4, we relate the frequency components at ω = ±4ω0:

1 cos(4ω0t) =
1
2
e4jω0t +

1
2
e−4jω0t

and conclude that X4 = 1/2 and X−4 = 1/2.

And finally, for A5 and φ5, we relate the frequency components at ω = ±5ω0.

2 cos(5ω0t) = ejπ/2e5jω0t + e−jπ/2e−5jω0t

= ie5jω0t − ie−5jω0t

and conclude that X5 = i and X5 = −i.

(c) We can either apply the frequency response to the eigenfunctions or we can look at x(t)



- K H
x y

Figure 5: Feedback system for problem 14

component (i.e. the component at ω = 0) gets completely attenuated (i.e. multiplied by 0).
The other two components are scaled by the absolute value of their frequency, leading to:

y(t) = (0)1 + (20π) cos(20πt) − (25π)2 sin(25πt)
= 20π cos(20πt) − 50π sin(25πt)

If the frequency response had been more complicated, we may have preferred another ap-
proach:

We already have the complex exponential breakdown of the input signal, meaning that we
know the input signal in terms of scaled eigenfunctions. We can therefore apply the frequency
response:

y(t) = H(0)X0

+X4H(4ω0)e4jω0t + X−4H(−4ω0)e−4jω0t

+X5H(5ω0)ej5ω0t + X−5H(−5ω0)e−5jω0t

= 0 +
1
2
|20π|e20πt +

1
2
| − 20π|e−20πt + |25π|ie25πt + | − 25π|(−i)e−25πt

= 20π
e20πt + e−20πt

2
+ 50π(i2)

e25πt − e−25πt

2i

= 20π
e20πt + e−20πt

2
− 50π

e25πt − e−25πt

2i
= 20π cos(20πt) − 50π sin(25πt)

which is the same result as with the other method.

14. In the negative feedback system of figure 5 assume that H(ω) = [1 + iω]−1. Let G be the
closed-loop frequency response. For K = 1, 10, 100

(a) Plot the magnitude and phase response of G; and

(b) determine the bandwidth ω at which ∠G(ω) = π/4.

Answer to 14 The closed loop frequency response is

∀ω, G(ω) =
KH(ω)

1 + KH(ω)
=

K

(K + 1) + iω
.
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K/(K+1)

Κ/(Κ+1)21/2

−π/4

−π
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Figure 6: Frequency response for problem 14

(a) So

|G(ω)| =
K

[(K + 1)2 + ω2]1/2
, ∠G(ω) = − tan−1 ω

K + 1
.

(b) See figure 6

15. Determine the ‘gain’ k and the guard so that the output of the hybrid system is as shown in
figure 7

Answer to 15 The gain and guard are given in figure 7.

16. Suppose we have a signal x : Integers → Reals, which is zero for all negative time, that is,

∀k < 0, x(k) = 0.

Suppose a signal y : Integers → Reals is obtained by filtering x as in Figure 8, with the
following result:

∀k < 0, y(k) = 0
for k = 0, y(k) = x(0)
∀k > 0, y(k) = x(k − 1) + x(k)

(a) Find the impulse response h of the system in Figure8 and the frequency response H .

(b) Suppose we receive the signal y, and we wish to recover the signal x. We can use a
feedback connection to achieve this result. Design the impulse response g and frequency
response G of the system used in feedback in Figure 9 so that the feedback system
recovers the signal x.
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s(t) = 1 
y(t) = 2s(t)

s(0) = 0

y(t)
y(t)

3 slope = 2

t

{s(t) | s(t) = 3}
s(t) := 0

Figure 7: Hybrid system for problem 15

H(ω)� �x y

Figure 8: The filtering system.

(c) Find the impulse response f and the frequency response F (ω) of the overall feedback
system from y to x in Figure 9.

Answer to 16

(a) Note that for all k ∈ Integers,

y(k) = x(k − 1) + x(k).

Given the input δ, the output is then

y(k) = δ(k − 1) + δ(k),

so the impulse response is

h(k) = δ(k − 1) + δ(k).
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y + x

Figure 9: The feedback system.
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Given the input ∀k, x(k) = ejωk, the output is

y(k) = H(ω)ejωk = ejω(k−1) + ejωk,

so,

H(ω) =
1

ejω
+ 1.

(b) Since, for all k ∈ Integers,

y(k) = x(k − 1) + x(k),

we know that

x(k) = y(k) − x(k − 1).

Given input x, the output of G should then be −D1(x). Thus, given input δ, the output
of G is −D1(δ). For all k ∈ Integers,

g(k) = −δ(k − 1).

Given input ∀k, x(k) = ejωk, the output is

G(ω)ejωk = ejω(k−1),

so

G(ω) = − 1
ejω

.

(c) Note that given y = δ, we get

∀k < 0, x(k) = 0,
∀k ≥ 0, k even, x(k) = 1,
∀k ≥ 0, k odd, x(k) = −1,

Thus, for all k ∈ Integers,

f(k) =

{
(−1)k, k ≥ 0
0, k < 0

Since we have a feedback system, we can use Equation (8.38) in the book so

F (ω) =
1

1 − G(ω)
=

ejω

ejω − 1

Suppose that we have a SISO continuous time system of the following form:

ṡ(t) = As(t) + bx(t),
y(t) = cT s(t).

We decide to define a new state function s̃ : Reals → RealsN , where

∀t ∈ Reals, s̃(t) = Ts(t),
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and T is an invertible N × N matrix. Find Ã, b̃, c̃T such that

˙̃s(t) = Ãs̃(t) + b̃x(t),
y(t) = c̃T s̃(t).

In this case, we have transformed the state, but we still maintain the same input/output behav-
ior.

Answer to 17 First note that

˙̃s(t) = T ṡ(t).

Thus,

ṡ(t) = T−1 ˙̃s(t).

Then we get

˙̃s(t) = TAṡ(t) + Tbx(t) = TAT−1 ˙̃s(t) + Tbx(t).

Now

y(t) = cT s(t) = cT T−1s̃(t).

Therefore

Ã = TAT−1,

b̃ = Tb,

c̃T = cT T−1.
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