More Practice Problems for Midterm #2, Fall 1998.

1. Consider a continuous-time LTI system H. Suppose that when the input is given by

$$x(t) = \begin{cases} \sin(\pi t) & 0 \le t < 1\\ 0 & \text{otherwise} \end{cases}$$

then the output is given by

$$y(t) = \begin{cases} \sin(\pi t) & 0 \le t < 1\\ \sin(\pi (t-1)) & 1 \le t < 2\\ 0 & \text{otherwise} \end{cases}$$

for all $t \in Reals$.

- a) Carefully sketch these two signals.
- b) Give an expression and a sketch for the output of the same system if the input is

$$x'(t) = \begin{cases} \sin(\pi t) & 0 \le t < 1 \\ -\sin(\pi (t-1)) & 1 \le t < 2 \\ 0 & \text{otherwise} \end{cases}$$

- 2. Suppose you are given the following building blocks:
 - An LTI system that is an ideal continuous-time lowpass filter with frequency response

$$H(\omega) = \begin{cases} 1 & -W < \omega < W \\ 0 & \text{otherwise} \end{cases}$$

where W is a parameter you can set.

• A gain block, where if the input is x then the output is given by

$$y(t) = gx(t)$$

for all $t \in Reals$, where again g is a parameter you can set.

• An adder, which can add two continuous time signals.

Use these building blocks to construct a system with the frequency response shown below:

- 3. Consider a continuous-time signal *x* with Fourier transform *X*. Find expressions for the Fourier transform of the following signals in terms of the Fourier transform *X*.
 - a) y such that $\forall t \in Reals$, y(t) = x(at), for some real number a.
 - b) w such that $\forall t \in Reals$, $w(t) = x(t) e^{i\alpha t}$, for some real number α .
 - c) z such that $\forall t \in Reals, z(t) = x(t)\cos(\alpha t)$, for some real number α .
- 4. Consider the FIR system described by the following block diagram:

Suppose that this system has frequency response $H(\omega)$. Define a new system with the identical structure as above, except that each unit delay is replaced by a double delay (two cascaded unit delays). Find the frequency response of that system in terms of $H(\omega)$.