EECS 20. Solutions to Practice Problems No. 3.

8.4 (a) No, since the response to an impulse includes non-zero samples earlier than time zero.
(b) The frequency response is the DTFT of the impulse response,

H(w) = Z h(m)e~m

m=—00
o0

= > (Bm—1)/2+6(m+1)/2)e

m=—o0
= (e +4¢€")/2
= cos(w).
This is periodic with perio@n because
Vwe Reals cos(w+ 27m) = cos(w).

(c) The fundamental frequenay, = 7/2, in units of radians per sample. To get the Fourier
series coefficients, just write the signal as a sum of complex exponentials,

w(n) = (1/2)6—i7rn + (i/2)e—i7rn/2 +9— (Z-/Q)eiwn/Q + (1/2)6—i7m’

from which we can read off the coefficients,

X, = 1/2
X_, = i/2
X, = 2

X, = —i/2
X, = 1/2.

The rest of the coefficients are zero.

(d) The Fourier series coefficients of the output will be the above Fourier series coefficients
multiplied by H (w) for the corresponding value af. This yields

y(n) = —(1/2)e"™ +2 - (1/2)e'™

= 2 —cos(mn).
8.5 We can calculate the CTFT of the impulse response,

o0

H(w) = /hmamﬁ

3

- /GBW“%
0
= (1= e B9)/(3iw).

The following Matlab code plots the magnitude response:
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Figure 1: Magnitude response of a 3-second continuous-time moving average.

f = [-5:1/100:5];
H = (1-exp(-i*3*2*pi*f))./(3**2*pi*f);
plot(f,abs(H));

Note that this gives a “Warning: Divide by zero” at frequency 0, but generates a correct plot
anyway. You can use L'Hopital’s rule to find that the value at frequency zero is 1. The plot is
shown in figurel.

8.6 (a) Using convolution,
(1) = [ihum@—TmT
— /Zw@~4)+a7—mmu—7mf

_ 1:5h—1mu—rmT+[:5u—zm@_TMT
= =ua(t—1)+at-2),

using the sifting rule.
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Figure 2: The magnitude frequency response of an LTI system with impulse resgonsed(t —
1) +0(t—2).

(b) The frequency response is the CTFT of the impulse response,

H(w) = / h(t)e “tdt

_ / (Bt — 1) + 6(t — 2))e ' dt

— 00
— e—iw + e—i?w
using the sifting rule.
(c) The following Matlab code creates the plot:

f = [-5:1/100:5];
H = (exp(-i*2*pi*f)+exp(-i*2*2*pi*f));
plot(f,abs(H));

which yields the plot shown in figur2
9.8 (a) Note that
X(—w) =isin(—Kw) = —isin(Kw) = X*(—w),



using the fact thatin(6) = — sin(—6). Thus,X is conjugate symmetric, which implies
thatz is real.

(b) Using Euler’s relation,
X (w) = (e’ — ¢ iEwy /9,
We can recognize the inverse DTFT of each of these terms to get
z(n)=(0(n+ K)—-4dn—-K))/2
whered is the Kronecker delta function.

9.9 First, note thay is periodic with perio, just asz is. Its Fourier series coefficients are given
by the formula

Y = y(t)e Mol gy

N | =

—x T

z(t — T)e_im“’otdt

==

—T

=@

= 1/:16(15)6Z-"’”“’(’(HT)(it
p

-7

—T
z(t)e=mwot gy

—T

=

—imwoT
e 0

| =

—imwoT

= e z(t)e=mwot gy

"=
O\'B

— e—zmonXm’

where we have changed variables in the integral (replacingh ¢ — 7), and then changed

the limits from—7 to p — 7 to 0 top. The change of limits is valid because we are integrating
over one cycle of a periodic function, so it does not matter where the integral begins. The end
result is

__—imwoT
Y, =c¢€ X,

so just as with a CTFT, a time delay affects Fourier series coefficients by multiplying them
by a complex exponential.

9.10 Use the inverse CTFT,

17 :
z(t) = %/X(w)ewotdw
—00



w/T

T .
= 5 / ol dw
—7/T
_ T itw /T —itn /T
T e ]
_ sin(tw/T)
B tr/T

9.11 Usethe CTFT,

o0

Y(w) = / y(t)e @idt

—00
o0
= / X(t)e ™tat
SO
o0

1 1 iwt
~V(ew) = —/X(t)e dt
21 2w

= z(w),

recognizing this as an inverse CTFT with symhelandt swapped. Thus,

1
%Y(—w) = z(w)

which implies that
Y(w) = 21z(—w).
9.12 Define

sin(at) .

y(t) = X (1) = 2m—C

From exercise , withr /T replaced by,

) @m)n/a, iflw <a
Y(w) = { 0, if |w|>a

From exercise ,

Y(w) = 2rz(—w)



SO

1
z(t) = 5-Y ()
Hence,
) mja, it <a
z(?) _{ 0, iflf>a

10.2 Note thatos(#) = cos(—6). Therefore,
cos(—2m440nT + ¢) = cos(2w440nT — ¢).

Thus, f = 440 andf = —¢.

10.6 (a) The sketch is shown below:

H(2rtf)
UT
/\ /\ .. f(kH2)
' -40 -10 | 10 40 80 >

The height of each of the peaksligT", which in this case is 40,000.
(b) The sketch is shown below:

H(2rtf)
T
f (kHz)
" -40 -10 | 10 40 80 »
The height of each of the peakslisI", which in this case is 20,000.
(c) The sketch is shown below:
H(2rtf)
Ut
f (kHz)
-30 -15 | 15 30 45 >

The height of each of the peaks1igT", which in this case is 15,000. Notice that the
overlapping CTFTs caused aliasing distortion.

1. (a) Theimpulse response is shown below:

h(n)




(b) Use convolution to relate the input and output

y(n) = Y h(k)z(n—k)

k=—00

= z(n)+2z(n—1),

using the sifting rule. When the input is the unit step, this becomes

0 ifn<O
y(n) =u(n)+2un—-1)=¢ 1 ifn=0
3 ifn>1
Here is a plot:
h(n)

(c) If the input isr, then the output is

0 if n <0
y(n):r(n)+2r(n—1):{ 3n—2 if > 1

Here is a plot:

L ho

(d) The frequency response is the DTFT of the impulse response,

H(w) = Z h(k)e~k

k=—00
= 142 %,
(e) For allw € Reals
H(w+2m) = 14 27w+
1+ 2e e 027
1+ 2¢ ™, sincee " =1
= H(w).



(®
H(-w) = 1+2e¥
= (1 42wy
= H*(w).
(g) The magnitude response is
|H(w)| = [1+2¢ ™|
= |1 +2cos(w) — 2isin(w)|
= \/(1 + 2cos(w))? + (2sin(w))?

= \/1 + 4 cos(w) + 4 cos?(w) + 4 sin?(w)

= /5 +4cos(w).
We have used the facts that for real numheesndb,
la + ib| = Va2 + b2
and for anyw € Reals
cos®(w) + sin?(w) = 1.
(h) The phase response is
[H(w) = /(142 %)
= /(1 4+ 2cos(w) — 2isin(w))
= tan '(—2sin(w)/(1 + 2 cos(w)))
= —tan '(2sin(w)/(1 4 2cos(w))).
We have used the fact that for real numbeendb,
/(a +ib) = tan" ' (b/a).
(i) The output will be
y(n) = |H(7/2)|cos(mn/2 + w/6 + LH(7/2)) + |H(7)|sin(mn + 7 /3 + LH(7)).
In this case,
H(r/2)=1-2i
and
H(m)=—1.
So
|H(7/2)| = V5, [H(r/2) = —tan *(2) =~ 1.107
and
|H(m)| =1, [H(m)=m.
Hence,
y(n) = V5cos(mn/2 + /6 4+ 1.107) + sin(wn + 7/3 + 7).



