## EECS20n, Quiz 3, 3/14/05

The quiz will take 15 minutes. Write your response on the sheet.

Please print your name and lab time here:

|             | Soluti | DU    |          |  |
|-------------|--------|-------|----------|--|
| Last Name _ | 301411 | First | Lab time |  |

1. [10 points] Give the zero-input state response (response if input = 0) of the state machine:

$$s(n+1) = as(n) + bx(n)$$
  
 $y(n) = cs(n) + dx(n)$   $n \in \text{Naturals}_0$ 

Here x is the input, y is the output and s is the state trajectory.

Sketch the response for a=1/2, b=c=d=1, and for a=2, b=c=d=1. For the sketches assume an initial state of s(0) = 2.

s(n+1) = as(n) zero input state response



2. [20 points] Consider the system given by the difference equations:

$$s(n+1) = \beta n s(n) + x(n)$$
  
 $y(n) = s(n) + x(n)$   $n \in \text{Naturals}_0$ 

with s(0) = 0. Here x is the input, y is the output and s is the state trajectory.

(a) [5 points] Assume  $\beta=1$ . Compute and plot the first few values of the output if (i) the input is an impulse:  $x(n)=\delta(n)$  for all  $n\in \text{Naturals}_0$ . (ii) if the input is  $x(n)=\delta(n-1)$  for all  $n\in \text{Naturals}_0$ .

13/5 (i)

$$y(0) = 1$$
  
 $y(1) = 1$   
 $y(2) = 1$   
 $y(3) = 2$   
 $y(4) = 6$ 

2/5] (ii)



5/5

- (b) [5 points] Is the system linear? Circle the right answer below.
  - A) No, for all values of  $\beta \in \text{Reals}$ .
- B) Yes, for all values of  $\beta \in \text{Reals}$ .
  - C) Yes, for some but not all values of  $\beta \in \text{Reals}$ .
  - D) Depends on the input sequence.



- (c) [5 points] Is the system time-invariant? Circle the right answer below.
  - A) No, for all values of  $\beta \in \text{Reals}$ .
  - B) Yes, for all values of  $\beta \in \text{Reals}$ .
  - $\bigcirc$  Yes, for some but not all values of  $\beta \in \text{Reals}$ .

B= 0 = time invariant

D) Depends on the input sequence.

15/5

(d) [5 points] Assume again  $\beta = 1$ . Compute and plot the first few values of the output if the input sequence is x(0) = 1, x(1) = 3 and x(n) = 0 for  $n \ge 2$ .

