
How to Pass Data Into and Out of a Loop Tutorial (Tunneling and Auto Indexing)

Properties of Loop Structures

When passing data values into or out of a loop structure, we must create “Tunnels” where the data

values enter and exit the structure. Tunnels are indicated on structure borders by a solid square or

square with brackets (depending on Auto Indexing) as indicated in Figure 1.

Figure 1

When data like arrays enter tunnels, the values can either be passed with Auto Indexing or without

Auto Indexing (note that Auto Indexing is a property only of loop structures). In Figure 1, the left

tunnel has square bracket indicating it has Auto Indexing Enabled while the right tunnel is solid

indicating Auto Indexing is disabled.

Passing Data Into a Loop

If Auto Indexing is enabled, values from array structures will be passed one at a time. If Auto

Indexing is disabled, then the entire data structure or value will be passed at once.

So for example, for the array structure, if Auto Indexing is enabled, on each new iteration the tunnel

would pass the next value IN the array (notice this is may NOT be an array data type). But if Auto

Indexing was disabled, the tunnel would pass the entire array structure.

For example, say we wanted to pass the array [1 2 3 4 5] into a loop structure. The general flow of

data would be something like this:

Original Input to
Structure

Iteration Value passed into
Structure WITH Auto
Indexing

Value passed into
Structure WITHOUT
Auto Indexing

[1 2 3 4 5] 1 1 [1 2 3 4 5]
[1 2 3 4 5] 2 2 [1 2 3 4 5]
[1 2 3 4 5] 3 3 [1 2 3 4 5]
[1 2 3 4 5] 4 4 [1 2 3 4 5]
[1 2 3 4 5] 5 5 [1 2 3 4 5]

Passing Data Out of a Loop

To pass data out of a loop structure, the behavior of the tunnel and effect of the Auto Indexing is the

same as when passing data into the loop. If we enable Auto Indexing, the values that the loop

generates will accumulate into an array, which will then be passed from the structure as an array of

values.

If we simply want to use each individual value in each iteration as they are produced, we need to

disable Auto Indexing.

Figure 2 gives an example of how Auto Indexing can be used to produce an array from 0 to 5.

Figure 2

In this example, we notice that the loop terminates after i = 6, so the loop will only execute from 0

to 5. In addition, we notice that since Auto Indexing is enabled on the tunnel, the values generated

by the count i are accumulated and passed in a matrix.

Tunnels and Auto Indexing with Higher Dimensional Arrays

For the two dimensional case, on each iteration, the Auto Index Enabled tunnel will provide a one

dimensional sub-array as shown in the table below.

Original Array Iteration Value Passed WITH
Auto Indexing

Value Passed
WITHOUT Auto
Indexing

1

2

3

For example, consider the following example in Figure 3 that performs an element-wise increment

of a two dimensional array. We will notice that the first Auto Indexing tunnel passes the matrix as a

row vector or one dimensional array and the second Auto Indexing tunnel on the nested For Loop

passes the individual elements.

Figure 3

Note that the same procedure occurs when rebuilding the array. The individual values for each row

vector are accumulated at the end of the nested For Loop and these row vectors are accumulated at

the end of the main For Loop and passed as a 2 dimensional array.

Generally with higher dimensional arrays, the value or array passed on the ith iteration through the

tunnel corresponds to the array containing all entries under the ith index of the first array

dimension.

Enabling and Disabling Auto Indexing

To enable or disable Auto Indexing, right-click on the tunnel that you want to change and select

“Enable Indexing” or “Disable Indexing” as shown in Figures 4 and 5.

Figure 4 Figure 5

You will also notice that if you choose Auto Indexing when you should not be using Auto Indexing,

LabView will indicate a data type mismatch at the divide block shown in Figure 6, since Auto

Indexing when tunneling out of the loop structure will generate an array instead of a numeric

double. Also, you will notice that wires that carry a set of data like an array will appear thicker than

wires that carry individual pieces of data.

 Figure 6

The error in Figure 5 is that the divide block is taking in a single numeric Double and an array of

numeric I32s. Even before coercion, this results in an incompatible data structure for the Numeric

Indicator because you cannot divide a single numeric double by an array and feed the resulting data

type to the input of a numeric indicator. To solve this problem we simply need to turn off the Auto

Indexing for the tunnel on the right side of the structure.

