
Simulation Relations
between

Nondeterministic State Machines

Tom Henzinger

Deterministic System:

for every input signal, there is exactly one output signal.

DetSys : [Time → Inputs] → [Time → Outputs]

Function:

Nondeterministic System:

for every input signal, there is one or more output signals.

NondetSys ⊆ [Time → Inputs] × [Time → Outputs]

such that ∀ x ∈ [Time → Inputs],
∃ y ∈ [Time → Outputs], (x,y) ∈ NondetSys

Binary relation:

Every pair (x,y) ∈ NondetSys is called a behavior.

System S1 refines system S2

iff

1. Time [S1] = Time [S2] ,

2. Inputs [S1] = Inputs [S2] ,

3. Outputs [S1] = Outputs [S2] ,

4. Behaviors [S1] ⊆ Behaviors [S2] .

S1 is a more detailed
description of S2;

S2 is an abstraction or
property of S1.

isaRegFile
op

inp

src1
src2
dst out
stall isaOut

regFile

op
inp

src1

src2

dst

out

opr1

opr2
res

stall

p1inp
p1op

p1dst

p2op
p2dst

alu

out

stall

isaAlu

Goal: establish that Pipeline refines ISA.

Abstractions and Properties:
Nondeterministic State Machines

Inputs

Outputs

States

initialState ∈ States

possibleUpdates :
States × Inputs → P(States × Outputs) \ Ø

receptiveness (i.e., machine must
be prepared to accept every input)

Lossy Channel without Delay

LCwD
Nats0 → Bins⊥Nats0 → Bins

0 1 1 0 0 0 1 1 … 0 ⊥ 1 0 ⊥ ⊥ 1 1 …

0 / 0
0 / ⊥
1 / 1
1 / ⊥

Channel that never drops two in a row

NotTwice
Nats0 → Bins⊥Nats0 → Bins

0 1 1 0 0 0 1 1 … 0 ⊥ 1 0 ⊥ 0 ⊥ 1 …

a b 0 / 0
1 / 1

0 / 0

1 / ⊥
0 / ⊥

1 / 1

Theorem :

The nondeterministic state machines M1 refines
the nondeterministic state machine M2

if

there exists a simulation of M1 by M2 .

condition on behaviors
(infinitely many)

relation between states
(finitely many)

In the following, assume

Inputs [M1] = Inputs [M2]

Outputs [M1] = Outputs [M2]

A binary relation S ⊆ States [M1] × States [M2] is a
simulation of M1 by M2

iff

1. (initialState [M1], initialState [M2]) ∈ S and

2. ∀ p ∈ States [M1] , ∀ q ∈ States [M2] ,

if (p, q) ∈ S ,

then ∀ x ∈ Inputs , ∀ y ∈ Outputs , ∀ p’ ∈ States [M1] ,

if (p’, y) ∈ possibleUpdates [M1] (p, x)

then ∃ q’ ∈ States [M2] ,

(q’, y) ∈ possibleUpdates [M2] (q, x) and

(p’, q’) ∈ S .

p

q

p’x / y

S

p

q

p’x / y

q’x / y

S

p

q

p’x / y

q’x / y

S

NotTwice refines Lossy Channel without Delay

0 / 0
0 / ⊥
1 / 1
1 / ⊥

q

a b 0 / 0
1 / 1

0 / 0

1 / ⊥
0 / ⊥

1 / 1

NotTwice is simulated by Lossy Channel without Delay

0 / 0
0 / ⊥
1 / 1
1 / ⊥

q

a b 0 / 0
1 / 1

0 / 0

1 / ⊥
0 / ⊥

1 / 1

Simulation

S = { (a, q), (b, q) }

Channel that drops every third zero

Nats0 → Bins⊥Nats0 → Bins

0 1 1 0 0 0 1 1 … 0 1 1 0 ⊥ 0 1 1 …
ThirdZero

State between time t-1 and time t:

3 third zero from now will be dropped

2 second zero from now will be dropped

1 next zero will be dropped

Channel that drops every third zero

1 32

0 / ⊥

0 / 00 / 0

1 / 1 1 / 11 / 1

ThirdZero refines NotTwice

a b 0 / 0
1 / 1

0 / 0

1 / ⊥
0 / ⊥

1 / 1

1 32

0 / ⊥

0 / 00 / 0

1 / 1 1 / 11 / 1

ThirdZero is simulated by NotTwice

a b 0 / 0
1 / 1

0 / 0

1 / ⊥
0 / ⊥

1 / 1

1 32

0 / ⊥

0 / 00 / 0

1 / 1 1 / 11 / 1

Simulation

S = { (3,b),

ThirdZero is simulated by NotTwice

a b 0 / 0
1 / 1

0 / 0

1 / ⊥
0 / ⊥

1 / 1

1 32

0 / ⊥

0 / 00 / 0

1 / 1 1 / 11 / 1

Simulation

S = { (3,b),
(2,b),

ThirdZero is simulated by NotTwice

a b 0 / 0
1 / 1

0 / 0

1 / ⊥
0 / ⊥

1 / 1

1 32

0 / ⊥

0 / 00 / 0

1 / 1 1 / 11 / 1

Simulation

S = { (3,b),
(2,b),
(1,b),

ThirdZero is simulated by NotTwice

a b 0 / 0
1 / 1

0 / 0

1 / ⊥
0 / ⊥

1 / 1

1 32

0 / ⊥

0 / 00 / 0

1 / 1 1 / 11 / 1

Simulation

S = { (3,b),
(2,b),
(1,b),
(3,a) }

Theorem :

The nondeterministic state machines M1 refines
the nondeterministic state machine M2

if

there exists a simulation of M1 by M2 .

Not “if-and-only-if” ! Not symmetric !
(We say that “M2 simulates M1”.)

NotTwice is not simulated by ThirdZero

a b 0 / 0
1 / 1

0 / 0

1 / ⊥
0 / ⊥

1 / 1

1 32

0 / ⊥

0 / 00 / 0

1 / 1 1 / 11 / 1

X 0 / ⊥

If M2 is a deterministic state machine, then

M1 is simulated by M2

iff

M1 is equivalent to M2.

If M2 is a deterministic state machine, then

M1 is simulated by M2

iff

M1 is equivalent to M2.

“if and only if” M1 refines M2, and M2 refines M1

(Behaviors [M1] = Behaviors [M2])

If M2 is a nondeterministic state machine, then

M1 is simulated by M2

implies

M1 refines M2,

but M1 refine M2 even if M1 is not simulated by M2.

a

u

z

yx

e

d

c

b
M1

M2

/ 0

/ 0 / 1
/ 0

/ 0/ 0

/ 0
/ 0

/ 0

/ 0

/ 1

is equivalent to

Two behaviors: 00000…, 01000…

Same two behaviors: 00000…, 01000…

a

u

z

yx

e

d

c

b
M1

M2

/ 0

/ 0 / 1
/ 0

/ 0/ 0

/ 0
/ 0

/ 0

/ 0

/ 1

is simulated by

Simulation S = { (a, x),

a

u

z

yx

e

d

c

b
M1

M2

/ 0

/ 0 / 1
/ 0

/ 0/ 0

/ 0
/ 0

/ 0

/ 0

/ 1

is simulated by

Simulation S = { (a, x), (b, y), (c, y),

a

u

z

yx

e

d

c

b
M1

M2

/ 0

/ 0 / 1
/ 0

/ 0/ 0

/ 0
/ 0

/ 0

/ 0

/ 1

is simulated by

Simulation S = { (a, x), (b, y), (c, y), (d, z), (e, u) }

a

u

z

yx

e

d

c

b
M1

M2

/ 0

/ 0 / 1
/ 0

/ 0/ 0

/ 0
/ 0

/ 0

/ 0

/ 1

does not
simulate

a

u

z

yx

e

d

c

b
M1

M2

/ 0

/ 0 / 1
/ 0

/ 0/ 0

/ 0
/ 0

/ 0

/ 0

/ 1

does not
simulate

/ 1X

a

u

z

yx

e

d

c

b
M1

M2

/ 0

/ 0 / 1
/ 0

/ 0/ 0

/ 0
/ 0

/ 0

/ 0

/ 1

does not
simulate / 0 X

In general, it requires a quadratic
algorithm to find simulations ...

isaRegFile
op

inp

src1
src2
dst out
stall isaOut

regFile

op
inp

src1

src2

dst

out

opr1

opr2
res

stall

p1inp
p1op

p1dst

p2op
p2dst

alu

out

stall

isaAlu

Goal: establish that ISA simulates Pipeline.

But finding simulations is easy (linear) for
special cases of nondeterministic state machines:

1. Deterministic

2. Output-deterministic (“almost deterministic”)

In this cases, the “informal” algorithm we used
to find matching pairs of states always works.

A state machine is output-deterministic

iff

for every state and every input-output pair,
there is only one successor state.

For example, LCwD and NotTwice are output-deterministic;
ThirdZero is deterministic.

Deterministic implies output-deterministic,
but not vice versa.

Deterministic: for every input signal x, there is
exactly one run of the state machine.

Output-deterministic: for every behavior (x,y),
there is exactly one run.

If M2 is an output-deterministic state machine, then
a simulation S of M1 by M2 can be found as follows:

1. (initialState [M1], initialState[M2]) ∈ S.

2. If (p,q) ∈ S and

(p’,y) ∈ possibleUpdates [M1] (p,x)

then

∃q’ s.t. (q’,y) ∈ possibleUpdates [M2] (q,x),

and ∀q’

if (q’,y) ∈ possibleUpdates [M2] (q,x),

then (p’,q’) ∈ S.

No “guessing” of successor state involved!

