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Deterministic System:

for every input signal, there is exactly one output signal.

DetSys :  [ Time → Inputs ] → [ Time → Outputs ]

Function:



Nondeterministic System:

for every input signal, there is one or more output signals.

NondetSys ⊆ [ Time → Inputs ] × [ Time → Outputs ]

such that  ∀ x ∈ [ Time → Inputs ],   
∃ y ∈ [ Time → Outputs ],  (x,y) ∈ NondetSys

Binary relation:

Every pair  (x,y) ∈ NondetSys is called a behavior.



System  S1  refines system  S2

iff

1.  Time [S1] = Time [S2] ,

2.  Inputs [S1] = Inputs [S2] ,

3.  Outputs [S1] = Outputs [S2] ,

4.  Behaviors [S1]  ⊆ Behaviors [S2] .

S1 is a more detailed 
description of S2; 

S2 is an abstraction or 
property of S1.
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Goal: establish that Pipeline refines ISA.



Abstractions and Properties: 
Nondeterministic State Machines

Inputs

Outputs

States

initialState ∈ States

possibleUpdates :  
States × Inputs  → P( States × Outputs ) \ Ø

receptiveness (i.e., machine must 
be prepared to accept every input)



Lossy Channel without Delay

LCwD
Nats0 → Bins⊥Nats0 → Bins

0 1 1 0 0 0 1 1 … 0 ⊥ 1 0 ⊥ ⊥ 1 1 …

0 / 0 
0 / ⊥
1 / 1  
1 / ⊥



Channel that never drops two in a row

NotTwice
Nats0 → Bins⊥Nats0 → Bins

0 1 1 0 0 0 1 1 … 0 ⊥ 1 0 ⊥ 0 ⊥ 1 …

a b 0 / 0
1 / 1

0 / 0

1 / ⊥
0 / ⊥

1 / 1



Theorem :

The nondeterministic state machines M1 refines
the nondeterministic state machine M2  

if

there exists a simulation of M1 by M2 .

condition on behaviors 
(infinitely many)

relation between states 
(finitely many)



In the following, assume

Inputs [M1] = Inputs [M2]

Outputs [M1] = Outputs [M2]



A binary relation  S ⊆ States [M1] × States [M2]  is a 
simulation of M1 by M2

iff

1.  (initialState [M1], initialState [M2]) ∈ S and

2.  ∀ p ∈ States [M1] ,  ∀ q ∈ States [M2] ,

if  ( p, q ) ∈ S ,

then   ∀ x ∈ Inputs , ∀ y ∈ Outputs , ∀ p’ ∈ States [M1] ,  

if  ( p’, y ) ∈ possibleUpdates [M1] ( p, x )

then  ∃ q’ ∈ States [M2] ,

( q’, y ) ∈ possibleUpdates [M2] ( q, x )  and 

( p’, q’ ) ∈ S .
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NotTwice refines Lossy Channel without Delay

0 / 0 
0 / ⊥
1 / 1  
1 / ⊥

q

a b 0 / 0
1 / 1

0 / 0
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NotTwice is simulated by Lossy Channel without Delay

0 / 0 
0 / ⊥
1 / 1  
1 / ⊥

q

a b 0 / 0
1 / 1

0 / 0

1 / ⊥
0 / ⊥

1 / 1

Simulation

S = { (a, q), (b, q) }



Channel that drops every third zero 

Nats0 → Bins⊥Nats0 → Bins

0 1 1 0 0 0 1 1 … 0 1 1 0 ⊥ 0 1 1 …
ThirdZero

State between time t-1 and time t:

3     third zero from now will be dropped

2 second zero from now will be dropped

1 next zero will be dropped



Channel that drops every third zero 

1 32
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ThirdZero refines  NotTwice
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ThirdZero is simulated by  NotTwice

a b 0 / 0
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1 32
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1 / 1 1 / 11 / 1

Simulation 

S = { (3,b),



ThirdZero is simulated by  NotTwice
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ThirdZero is simulated by  NotTwice
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ThirdZero is simulated by  NotTwice
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Simulation 

S  =  { (3,b),     
(2,b),
(1,b),
(3,a) }



Theorem :

The nondeterministic state machines M1 refines
the nondeterministic state machine M2  

if

there exists a simulation of M1 by M2 .

Not “if-and-only-if” ! Not symmetric !
(We say that “M2 simulates M1”.)



NotTwice is not simulated by  ThirdZero
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If  M2  is a deterministic state machine, then

M1  is simulated by  M2

iff

M1  is equivalent to  M2.



If  M2  is a deterministic state machine, then

M1  is simulated by  M2

iff

M1  is equivalent to  M2.

“if and only if” M1 refines M2, and M2 refines M1

(Behaviors [M1] = Behaviors [M2])



If  M2  is a nondeterministic state machine, then

M1  is simulated by  M2

implies

M1  refines  M2,

but  M1 refine M2 even if M1 is not simulated by M2.
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In general, it requires a quadratic 
algorithm to find simulations ...
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Goal: establish that ISA simulates Pipeline.



But finding simulations is easy (linear) for    
special cases of nondeterministic state machines:

1. Deterministic

2. Output-deterministic (“almost deterministic”) 

In this cases, the “informal” algorithm we used 
to find matching pairs of states always works.



A state machine is output-deterministic

iff

for every state and every input-output pair, 
there is only one successor state.

For example, LCwD and NotTwice are output-deterministic; 
ThirdZero is deterministic.

Deterministic implies output-deterministic, 
but not vice versa. 



Deterministic: for every input signal x, there is 
exactly one run of the state machine.

Output-deterministic: for every behavior (x,y),
there is exactly one run.



If  M2  is an output-deterministic state machine, then 
a simulation S of M1 by M2 can be found as follows: 

1. (initialState [M1], initialState[M2]) ∈ S.

2.  If  (p,q) ∈ S  and 

(p’,y) ∈ possibleUpdates [M1] (p,x) 

then

∃q’ s.t.  (q’,y) ∈ possibleUpdates [M2] (q,x),

and  ∀q’

if  (q’,y) ∈ possibleUpdates [M2] (q,x),

then  (p’,q’) ∈ S.

No “guessing” of successor state involved!


