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Basics: Matrices and vectors

An M x N matrix A is written as

a1 a2 ot Q1N
A= | ®21 @22 -GN
am,1 GM2 ct GM,N

The dimension of the matrix is said to b&/ x N, where the number of rows is
always given first, and the number of columns is given second. In general, the coef-
ficients of the matrix are real or complex numbers, so they support all the standard
arithmetic operations. We write the matrix more compactly as

or, even more simply ad = [a; j] when the dimension ofl is understood. The
matrix entriess; ; are called the coefficients of the matrix.

A vector is a matrix with only one row or only one column. A¥i-dimensional
column vector s is written as anV x 1 matrix

An N-dimensionakow vector z is written as al x N matrix

Z:[Zlaz27"'7ZN]

The transposeof a M x N matrix A = [a; ;] is the N x M matrix AT =
laji]. Therefore, the transpose of ahrdimensional column vectos is the V-
dimensional row vectos”, and the transpose of E-dimensional row vectog is
the N-dimensional column vectar’ .

From now on, unless explicitly stated otherwise, all vectors denstedy, b, ¢
etc. without the transpose notation are column vectors, and vectors depoted
sT 2T, 4T, b7, T with the transpose notation are row vectors.
A tuple of numeric values is often represented as a vector. A tuple, howeyer, is
neither a “row” nor a “column.” Thus, the representation as a vector carries the
additional information that it is either a row or a column vector.
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Basics: Matrix arithmetic

Two matrices (or vectors, since they are also matrices) can be added or subtracted
provided that they have the same dimension. Just as with adding or subtracting
tuples, the elements are added or subtracted. ThdisHf[a; ;] andB = [b; ;] and
both have dimensioM x N, then

A+ B = [aiyj + biyj].

Under certain circumstances, matrices can also be multiplied.hids dimension
M x N andB has dimensioiV x P, then the producti B is defined. The number
of columns ofA must match the number of rows &f. Suppose the matrices are

given by
a,1 a2 vt QLN big big - bip
A= | @1 a2 o oaN B ba1 bop - bop
b
am,1 aMmM2 -t GM,N bnvi bn2 - byp

Then thei, j element of the product’ = AB is

N
Cij = Z ai,mbm,j. (523)
m=1

The product has dimensiail x P.

Of course, matrix multiplication also works if one of the matrices is a vectdr. | If
is a column vector of dimensiolN, thenc = Ab as defined byg.23) is a column
vector of dimensionV/. If on the other hand” is a row vector of dimensiof/,

thenc” = b” A as defined byg.23) is a row vector of dimensiolV. By convention,
we write ' to indicate a row vector, and to indicate a column vector. Also by
convention, we (usually) use lower case variable names for vectors and upper case
variable names for matrices.

Multiplying a matrix by a vector can be interpreted as applying a function to a
tuple. The vector is the tuple and the matrix (together with the definition of matrix
multiplication) defines the function. Thus, in introducing matrix multiplication into
our systems, we are doing nothing new except introducing a more compact natation
for defining a particular class of functions.

A matrix A is asquare matrix if it has the same number of rows and columps.
A square matrix may be multiplied by itself. Thud for some integern > 0
is defined to bed multiplied by itselfn times. A° is defined to be théentity
matrix , which has ones along the diagonal and zeros everywhere else.
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